Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 289

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Embedded system using a radiation-hardened processor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2023-038, 48 Pages, 2024/03

JAEA-Review-2023-038.pdf:2.58MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2022. The present study aims to be developing a radiation-hardened optoelectronic processor with a 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor without any optical component with a 4 MGy TID tolerance, a radiation-hardened memory with a 4 MGy TID tolerance, and a radiation-hardened power supply unit with a 1 MGy TID tolerance. Moreover, Japanese research group will support radiation- hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team.

Journal Articles

In situ transmission electron microscopy observation of melted germanium encapsulated in multilayer graphene

Suzuki, Seiya; Nemoto, Yoshihiro*; Shiiki, Natsumi*; Nakayama, Yoshiko*; Takeguchi, Masaki*

Annalen der Physik, 535(9), p.2300122_1 - 2300122_12, 2023/09

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

Journal Articles

Effect of inner wall cracking on the cavitation bubble formation in the mercury spallation target at J-PARC

Ariyoshi, Gen; Saruta, Koichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Maeno, Koki*; Li, Y.*; Tsutsui, Kihei*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.1407 - 1420, 2023/08

Cavitation damage on a target vessel due to proton beam-induced pressure waves is one of the crucial issues for the pulsed neutron source using a mercury spallation target. As a mitigation technique for the damage, the helium microbubble injection into the mercury has been carried out by using a swirl bubbler in order to utilize compressibility of bubbles. Moreover, double-walled structure, which consists of an outer wall and an inner wall, has been applied as the target head structure. In this study, we aim to develop an abnormality diagnostic technology to detect the inner wall cracking, which is caused by such cavitation damage, from the outside of the target vessel. The mercury flow fields in the case with the cracking are evaluated by computational fluid dynamics analysis based on finite element method. And then, effect of the cracking on the flow field is discussed from the point of view of the flow-induced vibration and the acoustic vibration.

Journal Articles

Neutron/$$gamma$$-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF(Ce) in a $$gamma$$-ray field

Kaburagi, Masaaki; Shimazoe, Kenji*; Terasaka, Yuta; Tomita, Hideki*; Yoshihashi, Sachiko*; Yamazaki, Atsushi*; Uritani, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1046, p.167636_1 - 167636_8, 2023/01

 Times Cited Count:3 Percentile:90.12(Instruments & Instrumentation)

We focus on the thickness and property controls of inorganic scintillators used for thermal neutron detection in intense $$gamma$$-ray fields without considering pulse shape discrimination techniques. GS20$$^{rm{TM}}$$ (a lithium glass) and LiCaAlF$$_6$$:Ce(LiCAF:Ce) cintillators with thicknesses of 0.5 and 1.0 mm, respectively, have been employed. Pulse signals generated by photomultiplier tubes, to which the scintillators were coupled, were inserted into a digital pulse processing unit with 1 Gsps, and the areas of waveforms were integrated for 360 ns. In a $$^{60}$$Co $$gamma$$-ray field, the neutron detection for GS20$$^{rm{TM}}$$ with a 0.5-mm thickness was possible at dose rates of up to 0.919 Gy/h; however, for LiCAF:Ce, neutron detection was possible at 0.473 Gy/h, and it failed at 0.709 Gy/h. Threfore, in a $$^{60}$$Co $$gamma$$-ray field, the neutron/$$gamma$$-ray discrimination of GS20$$^{rm{TM}}$$ was better than that of LiCAF:Ce due to its better energy resolution and higher detection efficiency.

JAEA Reports

Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2022-017, 56 Pages, 2022/08

JAEA-Review-2022-017.pdf:6.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs" conducted in FY2020. This research is developing a radiation-hardened optoelectronic FPGA with a 1 Grad total-ionizing-dose tolerance on which optical technologies are introduced onto a semiconductor technology and a radiation hardened FPGA with a 200 Mrad total-ionizing-dose tolerance not using any optical component. Moreover, Japanese research group will support hardware acceleration on FPGAs used for neutron-detection system developed by UK team.

Journal Articles

Phase-field mobility for crystal growth rates in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of Crystal Growth, 585, p.126590_1 - 126590_7, 2022/05

Phase-field mobility, $$L$$, and crystal growth rates in crystallization of 11 oxides or mixed oxides in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids were calculated with a simple phase-field model (PFM), and material dependence of the $$L$$ was discussed. Ratios between experimental crystal growth rates and the PFM simulation with $$L=1$$ were confirmed to be proportional to a power of $$frac{TDelta T}{eta}$$ on the solid/liquid interface process during the crystal growth in a log-log plot. We determined that parameters, $$A$$ and $$B$$, of the $$L=A(frac{k_{B}TDelta T}{6pi^{2}lambda^{3}eta T_{m} })^{B}$$ were $$A=6.7times 10^{-6}$$ to $$2.6$$m$$^4$$J$$^{-1}$$s$$^{-1}$$ and $$B=0.65$$ to $$1.3$$, which were unique for the materials. It was confirmed that our PFM simulation with the determined $$L$$ reproduced quantitively the experimental crystal growth rates. The $$A$$ has a proportional relationship with the diffusion coefficient of a cation molar mass average per unit an oxygen molar mass at $$T_{m}$$ in a log-log graph. The $$B$$ depends on the sum of the cation molar mass per the oxygen molar mass, $$frac{Sigma_{i}M_{i}}{M_{O}}$$, in a compound. In $$frac{Sigma_{i}M_{i}}{M_{O}}leq 25$$, the $$B$$ decreases with the cation molar mass increasing. The assumed cause is that the B represents the degree of the temperature dependence of the $$L$$. Since the cation molar mass is proportional to an inertial resistance of the cation transfer, the $$B$$ decreases with inverse of the cation molar mass. In crystallization of the silicates of heavy cation in $$frac{Sigma_{i}M_{i}}{M_{O}}geq 25$$, the $$B$$ saturates at approximately 0.67, which leads to $$T_{p}approx 0.9T_{m}$$.

JAEA Reports

Development of radiation hardened diamond image sensing devices (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*

JAEA-Review 2021-026, 47 Pages, 2021/11

JAEA-Review-2021-026.pdf:2.16MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hardened diamond image sensing devices" conducted in FY2020. The research objective of this project is to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hardened diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.

Journal Articles

Experimental analysis on dynamics of liquid molecules adjacent to particles in nanofluids

Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*

Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11

 Times Cited Count:3 Percentile:27(Chemistry, Physical)

Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO$$_{2}$$) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO$$_{2}$$ particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO$$_{2}$$ nanofluids.

Journal Articles

Development of the multi-cubic $$gamma$$-ray spectrometer and its performance under intense $$^{137}$$Cs and $$^{60}$$Co radiation fields

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1010, p.165544_1 - 165544_9, 2021/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The number of nuclear facilities being decommissioned has been increasing worldwide, in particular following the accident of the Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station in 2011. In these nuclear facilities, proper management of radioactive materials is required. Then, A $$gamma$$-ray spectrometer with four segmentations using small volume CeBr$$_{3}$$ scintillators with a dimension of $$5 times 5 times 5$$ $$rm{mm}^3$$ was developed. The four scintillators were coupled to a multi-anode photomultiplier tube specific to intense radiation fields. We performed the $$gamma$$-ray exposure study under $$^{137}$$Cs and $$^{60}$$Co radiation fields. Under the $$^{137}$$Cs radiation field, the relative energy resolution at 1375 mSv/h was the relative energy resolution at 1375 mSv/h was 9.2$$pm$$0.05%, 8.0$$pm$$0.08%, 8.0$$pm$$0.03%, and 9.0$$pm$$0.04% for the four channels, respectively.

Journal Articles

Gamma-ray spectroscopy with a CeBr$$_3$$ scintillator under intense $$gamma$$-ray fields for nuclear decommissioning

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 988, p.164900_1 - 164900_8, 2021/02

 Times Cited Count:11 Percentile:89.29(Instruments & Instrumentation)

An increasing number of nuclear facilities have been decommissioned worldwide following the 2011 accident of the TEPCO' Fukushima Daiichi Nuclear Power Station. During the decommissioning, radioactive materials have to be retrieved under proper management. In this study, a small cubic CeBr$$_3$$ spectrometer with dimensions of 5 mm $$times$$ 5 mm $$times$$ 5 mm was manufactured to perform $$gamma$$-ray spectroscopy under intense $$gamma$$-ray fields. Furthermore, thanks to a fast digital process unit and a customized photomultiplier, the device could perform $$gamma$$-ray spectroscopy at dose rates of over 1 Sv/h. The energy resolution (FWHM) at 662 keV ranged from 4.4% at 22 mSv/h to 5.2% at 1407 mSv/h for a $$^{137}$$Cs radiation field. Correspondingly, at 1333 keV, it ranged from 3.1% at 26 mSv/h to 4.2% at 2221 mSv/h for a $$^{60}$$Co radiation field, which suggested to realize $$gamma$$-ray assessment of $$^{134}$$Cs, $$^{137}$$Cs, $$^{60}$$Co, and $$^{154}$$Eu at dose rates of over 1 Sv/h.

JAEA Reports

Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shizuoka University*

JAEA-Review 2020-059, 42 Pages, 2021/01

JAEA-Review-2020-059.pdf:3.07MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs". This research is developing a radiation-hardened optoelectronic FPGA with a 1 Grad total-ionizing-dose tolerance on which optical technologies are introduced onto a semiconductor technology and a radiation hardened FPGA with a 200 Mrad total-ionizing-dose tolerance not using any optical component. Moreover, Japanese research group will support hardware acceleration on FPGAs used for neutron-detection system developed by UK team. Finally, we will provide our radiation-hardened FPGA for the UK neutron-detection system.

JAEA Reports

Development of radiation hard diamond image sensing devices (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*

JAEA-Review 2020-027, 27 Pages, 2021/01

JAEA-Review-2020-027.pdf:2.98MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hard diamond image sensing devices". The research objective of this project is to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hard diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.

Journal Articles

Phase-field model for crystallization in alkali disilicate glasses; Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of the Ceramic Society of Japan, 128(10), p.832 - 838, 2020/10

 Times Cited Count:3 Percentile:17(Materials Science, Ceramics)

This study developed phase-field method (PFM) technique in oxide melt system by using a new mobility coefficient ($$L$$). The crystal growth rates ($$v_0$$) obtained by the PFM calculation with the constant $$L$$ were comparable to the thermodynamic driving force in normal growth model. The temperature dependence of the $$L$$ was determined from the experimental crystal growth rates and the $$v_0$$. Using the determined $$L$$, the crystal growth rates ($$v$$) in alkali disilicate glasses, Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$ were simulated. The temperature dependence of the $$v$$ was qualitatively and quantitatively so similar that the PFM calculation results demonstrated the validity of the $$L$$. Especially, the $$v$$ obtained by the PFM calculation appeared the rapid increase just below the thermodynamic melting point ($$T_{rm m}$$) and the steep peak at around $$T_{rm m}$$-100 K. Additionally, as the temperature decreased, the $$v$$ apparently approached zero ms$$^-1$$, which is limited by the $$L$$ representing the interface jump process. Furthermore, we implemented the PFM calculation for the variation of the parameter $$B$$ in the $$L$$. As the $$B$$ increased from zero to two, the peak of the $$v$$ became steeper and the peak temperature of the $$v$$ shifted to the high temperature side. The parameters $$A$$ and $$B$$ in the $$L$$ increased exponentially and decreased linearly as the atomic number of the alkali metal increased due to the ionic potential, respectively. This calculation revealed that the $$A$$ and $$B$$ in the $$L$$ were close and reasonable for each other.

Journal Articles

Electric field effect on the magnetic domain wall creep velocity in Pt/Co/Pd structures with different Co thicknesses

Koyama, Tomohiro*; Ieda, Junichi; Chiba, Daichi*

Applied Physics Letters, 116(9), p.092405_1 - 092405_5, 2020/03

AA2019-0550.pdf:0.91MB

 Times Cited Count:4 Percentile:26.53(Physics, Applied)

Journal Articles

Effects of temperature fluctuation on PIV measurement of natural circulation flow field

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 14th International Symposium on Advanced Science and Technology in Experimental Mechanics (14th ISEM'19) (USB Flash Drive), 4 Pages, 2019/11

The particle image velocimetry (PIV) was measured in scaled-model water experiments simulating a natural circulation flow field in a sodium-cooled fast reactor vessel. The temperature fluctuation in the natural circulation flow field causes the distribution of the refractive index. Thus, the temperature fluctuation affects the uncertainty of the velocity in the PIV measurement. In this study, the authors evaluated the effects of the temperature fluctuation on the PIV measurement in the natural circulation flow field.

Journal Articles

Assessment of the potential for criticality in the far field of a used nuclear fuel repository

Atz, M.*; Salazar, A.*; Hirano, Fumio; Fratoni, M.*; Ahn, J.*

Annals of Nuclear Energy, 124, p.28 - 38, 2019/02

 Times Cited Count:1 Percentile:11.15(Nuclear Science & Technology)

The likelihood for criticality in the far field of a repository was evaluated for direct disposal of commercial light water reactor used nuclear fuel. Two models were used in combination for this evaluation: (1) a neutronics model to estimate the minimum critical masses of spherical, water-saturated depositions of fuel material; (2) a transport model to simulate the dissolution of fuel material from multiple canisters and the subsequent transport of the solutes through host rock to a single accumulation location. The results suggest that accumulation of a critical mass is possible under conservative conditions but that these conditions are unlikely to occur, especially in the vicinity of a carefully-arranged repository.

Journal Articles

Determination of emission rates and spectra of neutrons from $$^{241}$$Am-Li sources

Hoshi, Katsuya; Nishino, Sho; Yoshida, Tadayoshi; Tsujimura, Norio

JPS Conference Proceedings (Internet), 24, p.011020_1 - 011020_6, 2019/01

We studied the application of AmLi interrogation neutron sources, which originally deployed in non-destructive assay apparatus for nuclear safeguard, to calibration work. To determine the emission rate, the angular distribution of neutron fluence was measured by a potable long counter. The emission rate at the date of measurement (October 23rd, 2015) was determined to be 1.00$$times$$10$$^{6}$$ n/s ($$pm$$4.1% (${it k}$ = 2)).

Journal Articles

Electric field control of magnetic domain wall motion via modulation of the Dzyaloshinskii-Moriya interaction

Koyama, Tomohiro*; Nakatani, Yoshinobu*; Ieda, Junichi; Chiba, Daichi*

Science Advances (Internet), 4(12), p.eaav0265_1 - eaav0265_5, 2018/12

AA2018-0306.pdf:0.57MB

 Times Cited Count:49 Percentile:88.77(Multidisciplinary Sciences)

We show that the electric field (EF) can control the magnetic domain wall (DW) velocity in a Pt/Co/Pd asymmetric structure. With the application of a gate voltage, a significant change in DW velocity up to 50 m/s is observed, which is much greater than that observed in previous studies. Moreover, a DW velocity exceeding 100 m/s is clearly modulated. An EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (DMI) up to several percent is found to be the origin of the velocity modulation. The DMI-mediated velocity change shown here is a fundamentally different mechanism from that caused by EF-induced anisotropy modulation. Our results will pave the way for the electrical manipulation of spin structures and dynamics via DMI control, which can enhance the performance of spintronic devices.

Journal Articles

Activation experiments for verification of neutron capture cross section of $$^{237}$$Np using variable neutron field at KURRI-LINAC

Takahashi, Yoshiyuki*; Hori, Junichi*; Sano, Tadafumi*; Yagi, Takahiro*; Yashima, Hiroshi*; Pyeon, C. H.*; Nakamura, Shoji; Harada, Hideo

Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.645 - 652, 2016/05

For the reduction of radioactive toxicities, feasibility study of nuclear transmutation of minor actinides (MAs) and long-lived fission products (LLFPs) by utilizing innovative nuclear reactor system (i.e. fast breeder reactors and accelerator-driven systems) has been actively conducted. To design these nuclear reactor systems, the accurate nuclear data are required. Therefore, to obtain more accurate nuclear data, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides(AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program". In a part of this project, the nuclear data of MAs are verified in the variable neutron spectra field at Kyoto University Research Reactor Institute-LINear ACcelerator (KURRI-LINAC) and Kyoto University Critical Assembly (KUCA). And the differential TOF data is cross-checked with an integral data for the validation of $$^{237}$$Np, $$^{241}$$Am, and $$^{243}$$Am. In this summary, the results of reaction rate of neutron capture cross section of $$^{237}$$Np are reported as an example in the study.

Journal Articles

Time dependence of the $$^{137}$$Cs concentration in particles discharged from rice paddies to freshwater bodies after the Fukushima Daiichi NPP accident

Yoshimura, Kazuya; Onda, Yuichi*; Wakahara, Taeko*

Environmental Science & Technology, 50(8), p.4186 - 4193, 2016/04

 Times Cited Count:22 Percentile:58.14(Engineering, Environmental)

289 (Records 1-20 displayed on this page)